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AFIT-ENY-14-M-03
Abstract

The concept that a structure is capable of producing buoyancy using an internal
vacuum rather than a gas dates back to the 1600s; but material technology has restricted
the construction of such concept for common geometries, such as the sphere. Different
and often complex geometries compensate for the lack of light materials that provide the
stiffness and strength needed. Therefore, this research looks at an Lighter than Air
Vehicle (LTAV) in the form of an icosahedral frame/skin configuration using nonlinear
finite element analysis in order to determine the structural response of such vehicle, its
capacity to sustain a vacuum with both material technology that exists today and in the
near future, and its buoyancy characteristics. The structural response is characterized
with large displacements; where membrane behavior dominates the icosahedral skin
response, generating geometric stiffening in the overall structure. It is shown that those
displacements have minimal effect in the structures buoyancy, with no more than 4%
reduction. Overall, the nonlinear analysis of the icosahedral structure provided tangible
background on its behavior and the Lighter than Air Vehicle (LTAV) applicability. It is
feasibly possible to actually manufacture this type of vehicle in the very near future

depending upon newer materials with more advanced strength.
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NONLINEAR STRUCTURAL ANALYSIS OF AN ICOSAHEDRON AND ITS
APPLICATION TO LIGHTER THAN AIR VEHICLES UNDER A VACUUM

1. Introduction

1.1 Objective

Aircraft structures have been designed for more than a century with wing like
configurations; tremendous progress has been made in this direction. The research
presented in this thesis is an attempt to evaluate a different type of air structure: a
structure that relies on the effect of buoyancy through an internal vacuum to provide lift
rather than the normal wing. Therefore, the objective is to evaluate the characteristics of
LTAV subjected to a vacuum, pointing out the structural features for consideration in the
eventual design of such a vehicle.

In order to evaluate the vacuum LTAV, Archimedes principle with the ideal gas law
along with nonlinear Finite Element Analysis (FEA) with the Newton Raphson technique
are used. The Archimedes principle states that an object submerged in any fluid exerts a
buoyant force equal to the weight of the displaced fluid, establishing the relationship that
allows the design to become Lighter than Air (LTA). Furthermore, the ideal gas law
serves to express the air density in terms of pressure and altitude, proving a direct venue
between the atmospheric pressure and the pressure that the structure is subjected to. FEA
then provides the means to evaluate the nonlinear behavior of the structure and its

relationship to buoyancy.



1.2 Chronology of Lighter than Air Vehicles
The idea of having a structure, or a vehicle for that matter, float in air dates back to
the 1600s, when Italian monk Francesco Lana de Terzi proposed the ‘Aerial Ship’. He

wrote:

The preceding inventions did not exhaust the ardour or the curiosity of
the human intellect, but have, rather, spurred it to seek how men could, after
the fashion of the birds, also fly in the air... No one has, however, deemed it
possible so to construct a vessel that it would travel on the air as if it were
supported on water, insomuch that it has not been thought practicable to
make a machine lighter than the air itself, which it is necessary first to do in
order to accomplish the desired end [28, 11].

The main idea behind this i
statement is the concept of having an object Id

be LTA. He proposed an LTAV composed I P /

of four LTA evacuated spheres made 7
of copper supporting a basket, as shown
in Figure 1. This design brought various
objections, made by scientists of that

time and later answered by Lana, in which

all were proven wrong but one. Those R

objections included the issue of evacuating W ,j——&ﬂﬂ
the air out of the spheres, the ’unstoppable’
rising of the vehicle once afloat, and Figure 1: Aerial Ship: lighter that air

the capacity of the spheres to remain rigid ship design proposed by Francesco Lana de

after evacuation [26]. First, evacuating, or ~ Terzi in 1670 [28, 15]



creating a vacuum, inside any enclosed structure presents no challenge nowadays, and
back then it could be accomplished with Boyle’s air pump. Second, departing from the
fact that the air density reduces with altitude, the vehicle or structure will stop rising once
the weight of the displaced air equals the weight of structure itself. The last objection,
which challenges the capacity of the spheres to remain rigid, is still valid today. After all,
realizing that a structure could float in air was the most important finding, and underlying
basis for the LTAV concept.

In 1709, the first LTAV design in the form of a hot air balloon was launched by the
Montgolfier brothers [14]. The hot air balloon uses a heat source to reduce the density of
air inside, creating a pressure difference that produces buoyancy. This understanding led
to the creation of dirigibles. First introduced by Henri Giffard in 1852 [10], dirigibles rely
on the use of a gas inside the structure that is LTA, commonly Helium or Hydrogen, to
displace enough air volume such that the weight of the structure and the internal gas is
less than the displaced air itself, acquiring buoyancy. Dirigibles became the first air
vehicle, capable of traveling and maneuvering with the assistance of propeller and control
surfaces. A pictographic representation of the history of dirigibles development from
1850 to 1960 1s shown inFigure 2. Three major design types arose: non-rigid, semi-rigid
and rigid. A rigid dirigible is one that uses a framework to retain its shape rather being
forced into shape by the internal gas, as with the non-rigid. The semi-rigid contains a
partial framework mainly used to distribute suspension and lifting loads.

Non-rigid designs have historical significance because they mark the start of the
dirigible era, given by the Giffard, shown at the lower left of Figure 2. The Giffard was 44

m (144 ft 4 in) long and hydrogen filled. In the need of carrying heavy payloads, rigid



designs became popular, making them large compared to non-rigids and semi-rigids. The
primary rigid design was developed by the Zeppelin Company of Germany, and in fact,
the term ‘Zeppelin’ became representative of all rigid designs, most made by this
company. They were mainly recognized for their use in commercial transportation, such
as the famous Hindenburg (LZ-129), but some were used for military purposes, such as

ZR-1 used by the United States Navy [20]. The LZ-129 was 803.8 ft (245 m) long and

hydrogen filled.
mmll & LEI-V30
RIGID 1= sovensee
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Figure 2: History of Dirigibles Development from 1850 to 1960, including rigid, semi-

rigid and non-rigid designs [3]



A historical question arises: ‘Why, after so many years of development, did the
dirigibles vanish (for the most part)?’ Dirigibles had major challenges over those years,
including their speed and control limitations, safety and poor ground handling. The
advancements of heavier than air vehicles, i.e., airplanes, during that period, such as their
high speed and control capacity, was the main reason for the disappearance of dirigibles.
Furthermore, airplanes eliminated most of the safety and handling issues. Safety mostly
relates through history with the use of hydrogen as a lifting gas. Being flammable,
hydrogen has been reported to be the cause of more than 22 accidents related to dirigibles
from 1930 to 1937 [21]. Helium, on the other hand, is a inert gas and therefore it has
been used since 1960s in dirigibles, but it being a depleting nonrenewable energy source,
has created restraint in LTAV designs throughout the years.

In the last decade, technology has driven new, safer and efficient LTAV designs. The
Lockheed P-791 hybrid air vehicle, having its first flight on January, 2006 [16], is an
example of these designs. Hybrid designs take advantage of aerodynamics in
combination to its buoyancy to produce lift and movement. These designs have solved
most of the safety and ground handling issues that previous dirigibles had, but they still
rely on Helium as the lifting gas.

In the same way, today’s advantages in materials and manufacturing techniques
makes producing buoyancy by evacuating a structure (creating a vacuum inside) an idea
that is not as far-fetched as when Lana suggested it. He suggested the use of vacuum
spheres. The sphere is the ideal shape for a vacuum LTAV since it achieves the greatest
stiffness with the minimum weight, therefore maximizing buoyancy; but a material that

has enough specific stiffness, E'/2/p, where E is the modulus of elasticity and p is the



density', such that an homogeneous sphere can resist a vacuum has yet to be created or
found for that matter. Therefore, designers have resorted to other geometries to
compensate the lack of material stiffness. Three of the LTAV designs found in published
literature that use an internal vacuum are mentioned here. First, A. Akhmeteli and A.V.
Gavrilin proposed the use of layered shell spheres, a sandwich construction type, and
second, T.T. Metlen considers the icosahedron and rotating cylinders. Details are
discussed in Section 2.8.

From the structural point of view of vacuum LTAV, a rigid design is needed since
there is no internal gas to force it into shape. Imagine a simple balloon: inflating it with
helium would cause it to float; since the air displaced weighs more than the balloon and
helium themselves. However, if the helium is vacated out of the balloon, the balloon
would shrink and no internal volume will be left, such that the balloon becomes heavier
than air. On the other hand, a rigid structure, or a rigid balloon for this matter, can
maintain its internal volume once vacated, provided it is stiff enough to resist the external
forces.

The research presented in this thesis tries to answer questions that arise from
Metlen’s research by evaluating the icosahedral structure with nonlinear analysis.
Therefore, the geometric characteristics of the icosahedron are presented next to provide

background on the reasoning of selecting such a geometry.

ISpecific stiffness (E'/?/p) is a material index that establishes the relative material performance. In this
case, E'/?/p was used to minimize weight while maximizing stiffness. Derivation and details of this index
are discussed in Section 2.7.



1.3 The Icosahedron as a Geometrical Shape

The icosahedron, properly called a regular icosahedron, is a regular polyhedron and
platonic solid [51]. The word ‘regular’ refers to polygons that are characterized by sides
of the same size, located symmetrically about a common center [53], such as the
equilateral triangle and the square. A polyhedron is then regular if its faces and vertex
figures are regular [54]. Furthermore, a platonic solid is a convex polyhedron (that can be
algebraically defined as the set of solutions to a system of linear inequalities) with
equivalent faces composed of regular polygons [52].

The icosahedron has several advantages that revolve around one characteristic:
symmetry. Symmetry results from the 20 equilateral triangles that form the icosahedron.
The icosahedron and its decomposition into 20 triangles is shown in Figure 3. As a
symmetry byproduct, a circumscribed sphere touches each of the 12 vertices that make
the icosahedron, such that an icosahedral radius is defined as the distance from the center
to each vertex. From the structural point of view, symmetry provides many advantages
including uniform stress distribution, simplified construction (compare to other
polyhedrons) and modeling simplifications. The latter becomes important since having a
simplified structure can yield an accurate model. One of the modeling simplifications is
the use of one triangle to approximate the behavior of the structure, done with the triangle

submodel (discussed in Section 3.5).

1.4 Challenges of Vacuum Lighter than Air Vehicle
Stiffened structures, such as monocoque structures use in airplanes, sandwich

structures used in panels and geodesic structures used in domes, provide stiffened



Figure 3: Icosahedron, left: three dimensional shape [9], right: planar decomposition [18]

alternatives to homogeneous structures that minimize weight while increasing the critical
load®. Furthermore, new manufacturing technologies, materials and analysis techniques,
such as Finite Element Methods (FEM), allows us to consider far more complicated
structures, opening the door to new designs such as the sandwich type structure and the
icosahedron. These structures usually exhibit shell, membrane and beam like behavior®.
An internal vacuum applied to shell and beam like structures introduces various
design challenges, to include structural instability and integrity. Structural instability is a
byproduct of buckling, in the forms of bifurcation and collapse, the last an inherently
nonlinear problem. On the other hand, structural integrity relates to the structure’s
capacity of withstanding the applied load without material failure and in this case for the

deflected structure to maintain enough internal volume such that it is still buoyant. Both

2The critical load is defined as the load that produces buckling of the structure. See Section 2.6 for more
information.

3Shell and membranes are defined as structural parts that are initially curved and flat, respectively, where
their thickness is much smaller than their characteristic length [49, 1]. See Section 2.5 for more information.
A beam is defined as a structural slender part subjected to transverse loading.



structural stability and integrity have a direct relationship with the geometric shape and
material of the structure, and can cause failure.

FEM are used in this thesis to model the behavior of an icosahedral skin reinforced
by an icosahedral frame under a vacuum. Models use nonlinear analysis to evaluate the
stability and integrity of the structure, including the behavior of the skin with respect to
its thickness and the frame response to the applied vacuum. Different materials and the

structure’s capacity to achieve buoyancy are also considered.

1.5 Assumptions and Limitations
FEA inherently includes assumptions and approximations, starting with the
discretization of a complex structure such as the icosahedron. Nonetheless, the following

assumptions where made within the FEA realm:

1. Skin Submodel*

(a) The frame remains rigid as pressure is applied.

(b) The skin acts like a membrane such that simply supported Boundary

Condition(s) (BC) along the triangle edges are used>.
2. Frame Submodel®

(a) All the load applied to the skin is distributed directly to the frame with no

moments.

“Model details in Section 3.5

> A convergence study is conducted using both membrane and shell elements against analytical solutions.
See Chapter 3.

®Model details in Section 3.6



(b) Frame members act like beams; beam elements are therefore used for

analysis.
3. Icosahedron Model

(a) The skin behaves as a membrane such that only the displacement Degrees of

Freedom (DOF) are tied to the frame members.

(b) The skin edges displace along with the frame edges, therefore frame and skin

edges share nodes.

4. All materials are modeled as linear elastic. Finding realistic material properties that
allow the icosahedron to achieve positive buoyancy is critical, therefore having
material properties tied to material names while making the isotropic assumption

provides perspective while maintaining simplicity.

5. The air behaves as an ideal gas, limiting the maximum altitude at which the

buoyancy equations are valid to 65,000 ft.

1.6 Overview
e Chapter I: States the objective of this thesis, the chronology of LTAV, the

icosahedron as a geometrical shape and the challenges of an LTAV.

e Chapter II: Summarizes theory presented in relevant literature related to the
structural behavior and failure modes of shell and beam like structures along with

the buoyancy relationships of the icosahedron.
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Chapter III: Presents the development of the different models used in this thesis, to
include the modeling processes, the Finite Element (FE) techniques and the

convergence studies.

Chapter I'V: Presents the icosahedron models’ results and comparison for different

material properties.

Chapter V: Summarizes the research, and presents conclusions drawn, their

significance, and recommendations for future research.

Appendix A: Includes the tabulated results of the different studies made in order to

develop the icosahedron model.

Appendix B: Includes the Python codes used to create, analyze and extract results

from the different models considered.

Appendix C: Includes all the Matlab codes used to run the icosahedron models and

extract their results.

11



II. Theory

2.1 Overview

The effect of this research expands two main areas: the understanding of the
icosahedron’s structural behavior and its applicability to LTAV subjected to a vacuum.
The field of structures subjected to an internal vacuum has limited published literature,
with no literature found on the structural instability of an icosahedron subjected to a
vacuum. Furthermore, only two published researches were found related to LTAV
subjected to an internal vacuum. On the other hand, individual structural components
have been extensively studied.

The purpose of this chapter is three-folded: (1) to state the principles of LTAV;
(2) to summarize the research that has been done on vacuum LTAV and subjects related to
the behavior of the icosahedron’s structural components; and (3) to state its relationship
to the research presented in this thesis. The discussion starts with the Weight to
Buoyancy Ratio (W/B) concept, its applicability to the icosahedron, and the effect of
altitude on structural loading and W/B. Then it moves to a discussion of nonlinear
analysis, followed by the structural instability, failure and the behavior of membranes and
shells. Then, relevant materials and their properties are considered; finalizing with the

summary of vacuum LTAV research.

2.2  Weight to Buoyancy Ratio
“Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to

the weight of the fluid displaced by the object.”, Archimedes of Syracuse [22]. In other

12



words, Archimedes principle states that when a body is submerged in a fluid, a vertical
(buoyant) force equal to the weight of fluid displaced by set body is produced. In a fluid
column, pressure increases as altitude decreases, caused by the weight of the overlying
fluid. Thus, a submerged body experiences a greater pressure at the bottom of the column
than at the top. If the weight of the immersed body is more than the weight of the fluid it
is displacing, the body will tend to sink. On the other hand, if the weight of set body is
less than the weight of the fluid it is displacing, the body will tend to float. The point at
which both weights equal is the point of neutral buoyancy, where the body remain static
provided no other force is exerted on or by the body. Ergo, in order for a body to be
buoyant, its weight has to be less that the weight of the fluid displaced by it. This
relationship among body and fluid weights results in the W/B concept.

The W/B is a concept that establishes how buoyant a structure is with respect to its
own weight. In ideal conditions, this ratio tends to zero, such that its weight is much less
than its buoyant force, producing lift. In case of the icosahedron subjected to a vacuum,
we have two main components, the frame and the skin, as shown in Figure 4. The

icosahedron W/B is then given by:

w _ (MSki" + Mfmme + Mair,i) 8 _ Vskin Pskin + Vframe Pframe T (Vz - Vr)pair,i (2 1)
B - Mair,og B (Vt - Vr) pair,o )
where:

B = buoyancy of the structure

g = acceleration of gravity

M, ;» M, = internal and external air masses, respectively

13



Figure 4: Icosahedral Frame/Skin Combination - skin (left half), frame(right half) [31]

M trames Mgin = frame and skin masses, respectively

V¢rames Visiin = frame and skin volumes, respectively

V; = icosahedron internal volume before deformation

V. = icosahedron internal volume reduction

W = weight of the structure

Puiris Pairo = Internal and external air densities, respectively

Pframe> Psin = frame and skin densities, respectively

The internal volume reduction accounts for the deflection of the loaded skin and/or

any internal component. The internal and external air densities, p,;,; and p ;.. are
variables that depend on altitude and amount of vacuum applied. To express the air
densities in terms of pressure, the air can be modeled as an ideal gas using the ideal gas
law given by:

P = pRT 2.2)

14



where:
P = pressure
p = air density
Rs = air specific gas constant
Using the ideal gas law to express the densities in terms of pressure and temperature,
provides the means to relate the buoyancy of the icosahedron with altitude and vacuum
level, extending the design envelope of these equations. Substituting Equation (2.2) into
Equation (2.1) results in:

Pair,i
W Vskin Pskin T Vframe Pframe + (Vl - Vr) (m)

— : (2.3a)
B Vi= Vo (w72)
E _ Vskin Pskin + Vframe pframe n Pair,i Tair,o (2 3b)
B (V — V) Pairo Piro Tair .
! r RTﬂir,o ’ ’

where:
Piris» Par, = internal and external air pressures, respectively
T4iri» Tair, = internal and external air temperatures, respectively
Equation (2.3) serves to calculate the W/B of the icosahedron for any altitude below
20 km (65,000 ft) [17] and vacuum (partial or total). For a partial vacuum, the remaining
internal pressure counteracts the external pressure, such that the pressure “felt” externally
by the skin is given by:
Poppiica = Pairo — Pair 2.4)

where: P, .. = air pressure applied to or ‘felt’” by the skin
If a total vacuum is achieved, the second term of Equation (2.3b) goes away since no

air remains inside, such that P,,,;.; equals the Sea Level (SL) pressure.
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Considering the icosahedron volume, one should note that a circumscribed sphere
touches each of the vertices, such that the radius, r, is measured from the center to any
vertex. In addition, an inscribed sphere with radius, r; , touches each triangle at the
centroid. Now consider a mid-plane perpendicular to an imaginary line drawn in between
opposite vertices, extracted from Figure 5a and shown in Figure 5b by the dotted line,
where A and B are two vertices on the mid-plane, as shown in Figure 5b. Then,

r = OA = OB, where O is the icosahedron center. The center cutout shown in Figure 5a

has 10 faces around, therefore the angle OAB is 36°. Then,

OC = AC cot18° = BC cot18° (2.5)

(a) Partitions (b) Mid-plane (c) Equilateral Triangle
Figure 5: Icosahedron Decomposition
Also consider one of the equilateral triangular faces with the points A, B, C, D, F

and P, as shown in Figure 5c. Then, r; = OP. Given the triangle’s edge length, the height

(DF) can be obtained with the Pythagorean theorem, as follows:
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Iyeam 3
12 — DF‘2 + (beTa) =>DF=h= %lbeam (26)

beam

where:
h = height of the triangle
lpeam = edge length
Now, knowing that the the angle between sides is 60°, the centroid (DP) is given by:

lbeam \/§

DP = > tan 30° = ?lbeam (27)

Since it is an equilateral triangle, AC = Iy, /4, Equation (2.5) becomes:

l eam
oc="2 o cotls® (2.8)

Then, given that OCP is a right triangle, the Pythagorean theorem can be used in

Equation (2.6), Equation (2.7) and Equation (2.8),
OP* = OC?-CP?=0C?*-(CD-DP)*=0C? - (h/2 - DP)*

12 2 21Q°
beam 21Qo _ ﬁ _ ﬁ — 72 cot”18° 1
16 cot“18 ( 4 lbeam 6 lbeam) - lbeam( 16 48)

t218° 1
ri= OP = Ly, ,/COT - 25 ~ 075580 (2.9)

Equation (2.9) provides the radius of the inscribed sphere with respect to the edge
length. In the same fashion, the radius of the circumscribed sphere (icosahedron radius)

is obtained with respect to the edge length:
OF? = OP? + FP* = OP* + (h — DP)’

0F2 ~ (0-75581beam)2 + (glbeam - ‘/?glbeam)
r=O0F ~ 09511 lpeun (2.10)
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Finally, the volume of the icosahedron can be represented by 20 pyramids of height r;,

such that:
A= ?zﬁm @.11)
v.=20(1a)r :i(3+ «/3)13 (2.12)
l 3 4 12 beam .
where:

A = area of an equilateral triangle
V; = icosahedron internal volume
Equation (2.10) and Equation (2.12) were verified with Reference 29 and
Reference 51. Both equations are used to develop the W/B equations for the frame and
the skin in terms of the icosahedron radius.
It is desirable to select geometric properties that allow for the icosahedron to achieve
buoyancy, i.e., W/B < 1. But V, depends on the analysis results and the geometric

properties are needed in order to establish the model. Nonetheless, assuming that:

e No internal volume is lost due to the skin displacement or internal components,

e The material densities remain constant throughout the analysis,

e A total vacuum is achieved, and

e The structure is vacated at SL altitude,

provides a method of estimating the geometric properties of each component given a

desired W/B.
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2.2.1 Skin W/B.
Provided that the skin is composed of 20 equilateral triangles, the volume can be

represented using Equation (2.11):

V

skin

- 20(£12 ]rsk,-,, = 531,02 (2.13)

4 beam beam

where: 7y, = icosahedral skin thickness
Using the assumptions previously stated’ and considering the skin separate from the

frame, the skin thickness can be derived for a skin W/B set value. Equation (2.1) then

reduces to:
[ @19
where: p,; = density at SL
Substituting Equation (2.10) in Equation (2.12) and Equation (2.13), and then
combining them with Equation (2.14), the skin thickness is:
7 Pair (W/ Bin) (2.15)

Fkin ¥ 397523 pan
Equation (2.15) is used in all the analyses related to the skin to estimate a ty;, that
provides a desired W/B.
2.2.2 Frame W/B.
As done for the skin, the geometric properties of the frame can be obtained for a
specific W/B. In this case, a circular cross-section is selected for frame beams; therefore,

two geometric parameters arise: the beam radius and beam thickness. the beams radius

7 Assuming that there is no internal volume loss due to the skin displacement or internal components,
that the the skin displacement causes no change in its volume, that a total vacuum is achieved and that the
structure is vacated at SL altitude.
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and thickness. A pictographic representation is shown in Figure 6. In order to solve for

them, the following relationship is established:

theam = C Yheam for 0<c<1 (2.16)

where:
T'bean = beam radius

theam = Deam thickness

Theam

tbeam

Figure 6: Beam Profile

With Equation (2.16) and knowing that the icosahedral frame is composed of 30

beams, the volume can be obtained in terms of ¢ as follows:

Vrame = 307 (2rpeantbean = roan) loeam = 307770 (2€ = ) lycam (2.17)

Once again, using the assumptions previously stated® and considering the skin

separate from the frame, Equation (2.1) reduces to:

8 Assuming that there is no internal volume loss due to the skin displacement or internal components,
that the the skin displacement causes no change in its volume, that a total vacuum is achieved, and that the
structure is vacated at SL altitude.
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E _ Vframe P frame
B frame Vinternal Pair
Substituting Equation (2.10) in Equation (2.12) and Equation (2.17), and then

(2.18)

combining them with Equation (2.18), the beam radius for 0 < ¢ < 1 is:

W/B rame) Fair
Tpeam = T ( / ! )p (219)
39.0742 (2¢ = ¢%) P frame

Equation (2.19) is used in all the analyses related to the frame to estimate a r},,,, that
provides a desired W/B. Note that for a solid beam, ¢ = 1.

2.2.3 Icosahedron W/B.

It is important to include all the effects -altitude, vacuum (partial or total), and
volume reduction- in the W/B calculation. Substituting Equation (2.13) and

Equation (2.17) in Equation (2.3b), which accounts for all these effects, results in:

1% 5 \/gtskinlzmm Pskin t 3O7Tr2mm 2c— C2 lbeam Pframe Pairi Tairo
L b ban ) e 4 Zairi air (2.20)

B (Vz — Vr) (%) Pair,o Tair,i

Then substituting Equation (2.10) and Equation (2.12) in Equation (2.20) and

simplifying, results in:

W 9.5745t5 1% puin + 99.098 (2 = ) 12, T Pframe Poipi Tairo
- = 4+ SO e (2.21)
B [253627’3 - Vr] (M) Pair,o Tair,i

R Tnir,o

Equation (2.21) along with Equation (2.4) are used to calculate the resulting W/B as
the structure deforms due to the applied pressure. Note that Equation (2.21) is applicable
for any icosahedron radius and any skin and frame materials, as long as the following

criteria is meet:
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e Material homogeneity: both frame and skin densities remain constant within each

part.

e Geometric homogeneity: both frame and skin geometry, 7., and #;,, remain

constant through the icosahedron.

e Moderate dimensions: if ry,,, and ty4;, are large compared to each characteristic
length, the icosahedron radius, r, needs to be adjusted individually to compensate.

At this point, the W/B needs to be reconsidered along with the FEA technique.

e The altitude considered is less that 65,000 ft.

2.3 Air Properties with Altitude

Creating an internal vacuum in any enclosed structure that is exposed to the
environment, generates pressure forces on the structure’s external surfaces to try and
balance the pressure difference. The amount of external pressure depends on the amount
of vacuum generated and the altitude. The barometric formula shown below indicates the

changes in air pressure versus altitude.

P=P,exp (—RgT H) (2.22)
St

where:
H = altitude
P, = SL pressure
Rs = specific gas constant

T, = temperature at SL
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Figure 7: Air Properties vs Altitude [50]

Note that pressure changes exponentially with altitude. The changes in pressure and
altitude are graphed in Figure 7, along with changes in density and temperature. Note that
maximum pressure and density are achieved at SL. As seen in Equation (2.1), having the
lowest denominator is ideal since it improves buoyancy, and the latter is maximized when
all the air volume is extracted, considered a perfect vacuum, and the structure is at SL.
Therefore, the standard air properties, pressure (101,325 Pa), density (1.2041 kg/m?) and
temperature (288.15 K), are used in this thesis for the calculations of W/B and applied

load [1].
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2.4 Nonlinear Analysis

Historically, the use of linear analysis tools to describe the behavior of a body under
load has been preferred. These tools provide an acceptable approximation for most
real-life problems. Their availability and simplicity make them an attractive choice over
the complexities brought by nonlinear analysis tools. But there are problems that require
nonlinear analysis in order to capture the ‘true’ structural behavior. In order to solve such
problems, algorithms have been developed and included in computer software, most
commonly referred as FEM, which use the governing equations along with numerical
solution methods to solve for the structural response. One of the most common solution
techniques is the Newton Raphson. Summaries of nonlinear relationships in structure
behavior and the Newton Raphson method follow.

2.4.1 Nonlinearities.

The term “stiffness” is a property that characterizes the structural response of a body
subjected to loading. In general, the structure’s stiffness changes as it is being deformed.
But if small deformation occurs, the structure can retain the stiffness that it had prior to
loading; this is what is characterized as linear behavior. When large deformation occurs,
the structural stiffness changes, causing nonlinearities [4]. The nonlinearities are
described by the governing equations. Geometric nonlinearity, found in the strain
displacement relationships and the equilibrium equations, is characterized by a change in
geometric shape. Material nonlinearity, found in the constitutive laws, usually result from
structure straining past the yielding point [42, 21]. Therefore, these two nonlinearities are
treated independently. In this thesis, geometric nonlinearity is particularly important

since large deflections are expected. Large deflections come as a byproduct of the weight
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restrictions given by the nature of LTAV, and drive the geometric parameters of the
icosahedron. Therefore, only geometric nonlinearity is considered.

When using FEA to evaluate a structure that exhibits nonlinear behavior, several
considerations need to be taken into account. First, the force direction. Large
deformation can cause a change in force direction. Two cantilever beams subjected to a
concentrated force are shown in Figure 8. In Figure 8a, the force remains normal to the
beam as it displaces; this force is called a follower force. In Figure 8b, the force retains
its original direction as the beam displaces; this force is called a non-follower force. In
the same way that large deformations affect the force direction, the force direction affects
a structure with large deformations. FEA software usually provides the option of

selecting the type of force you wish to use for the model.

(a) Follower Force (b) Non-follower Force

Figure 8: Follower and Non-Follower Forces. A follower force changes its direction during
the process of deformation and remains normal to the deformed beam (left). A non-follower force

retains its original direction (right) [4].
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A good example is the icosahedron itself. The icosahedron is subjected externally to
the atmospheric pressure, and pressure always acts normal to the surface (follower force).
While linear analysis considers no geometric changes, realistic analysis includes
geometric nonlinearity to account for those changes.

Another consideration is stiffness change. An example is a flat shell (capable of
carrying both bending (out-of-plane) and membrane (in-plane) stiffnesses) subjected to a
pressure load. Initially, the flat shell resists the pressure only with its bending stiffness.
After some deformation has developed, the shell acquires membrane stiffness, stiffening
the shell as the pressure increases. In this case, nonlinear analysis is required regardless
of having small or large deformations. Note that the icosahedral skin, composed of
initially flat triangles, depends on nonlinearity to develop membrane stiffness.

Other geometrically nonlinear considerations include buckling (discussed in
Section 2.6) and post buckling behavior, supports that cause changes in the structure’s
stiffness, and contact problems.

2.4.2 The Newton Raphson Method.

The Newton Raphson method is an iterative technique that solves nonlinear
equations. In the case of FEA, this technique solves the nonlinear static equilibrium
equations that govern the structural behavior of a model by diving the loading in small
steps and finding the solution path in an incremental fashion. The following discussion,
based on the work of A.N. Palazotto and S.T. Dennis [42, 70, 131-134], summarizes such
a method for a one-dimensional case.

The nonlinear static equilibrium equations resulting from a finite element

discretization are in the form of:
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KrAg = —F(q)
[K +Ni () + N2 (¢7)| Ag = = [K + N1 (@) + 3N2 (%) g + R 229
14 2\9q q >V1(q) + 30N2(q7 )| 4

where:

K = linear stiffness matrix

K7 = tangent stiffness matrix

N, = linear function of q

N, = quadratic function of q

g = nodal displacements vector

R = nodal loading vector
Given that at the first load increment, R, g = 0, Equation (2.23) reduces to a linear

equation:

qu = Rl (224)

such that K7 = K, the slope of the load versus displacement curve at g = 0; this would be
the first iteration. In the second iteration, g, is substituted in Equation (2.23) to solve for

the increment Ag,, as shown below:

[K+ Ni(q1) + N, (qlz)] Agy = —|K + %Nl (q1) + %Nz (qlz)

q + R, (2.25)

The right side of Equation (2.25) is the residual force vector AR, that is left by the

second iteration. The displacement ¢ is then updated as follows,

Q> = q1 + Aqy (2.26)

Iteration continues until the residual force vector AR, becomes small, signifying that the

equilibrium equations are satisfied for the first load increment. The process is repeated
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for the next load increment, R,, as shown in Figure 9 until convergence. Points A and B

represent the solutions for load increments 1 and 2.

> q

Figure 9: Newton Raphson Algorithm: second increment [42, 133]

In reality, discretized models have multiple DOF, therefore instead of having one
load versus displacement curve, there are as many curves as DOF. For such cases, a

global convergence criterion is established, such as:

\/Zi (%)2 - \/Zi (qir_l)z

i (Clil)2

x100% < TOL (2.27)
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where ¢', ¢, and ¢} are the elements of ¢ (i = 1 to n DOF) for the rth, (r — 1)th and
first iterations for a given load increment, and 7 OL is user defined, typically taken as
0.1%. A drawback of the Newton Raphson method is its inability of crossing points
where the load versus displacement slope is zero. For these cases, a displacement driven

method, or the Riks method [12, Ch. 6.2.4], which varies the load and displacement

simultaneously, is used.

2.5 Membranes, Plates and Shells

There are many applications using plates, membranes and shells components in
structures. Therefore published solutions are largely available for common geometries
such as the circle, rectangle, sphere and cylinder.

Literature commonly refers to plates and shells as structural parts that are initially
flat and curved, respectively, where their thickness is much smaller than their
characteristic length [49, 1]. Shell are characterized by both bending, out-of-plane, and
membrane, in-plane, stiffnesses; therefore used for, among many others, cylindrical and
spherical applications. On the other hand, plates are primarily characterized by their
bending stiffness, therefore used for applications where a load is applied normal to a
surface in which small deformations occurs. The membranes then result from two
scenarios: plates with in-plane applied forces and thin plates with out-of-plane applied
forces. For the first scenario, in-plane forces produce no bending stiffness, developing all
its resistance through its membrane stiffness. For the second scenario, the plate becomes
thin enough that the bending stiffness becomes negligible. At that point, large
deformations tend to occur and membrane stiffness is developed as it deforms. All three

types of parts consider displacement values from the middle surface. A pictographic
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representation of the stiffness distributions for the plate, membrane and shell are shown in
Figure 10. Note that while the shell has both bending and membrane stiffnesses
(Figure 10c), the plate and membrane have bending (Figure 10a) and membrane

(Figure 10b) stiffnesses only, respectively.

& = z E

Bending Membrane Bending Membrane

stiffness stiffness stiffness stiffhess
(a) Plate (b) Membrane (c) Shell

Figure 10: Stiffness Distribution of Plates, Membranes and Shells

Considering one of the equilateral triangles of the icosahedron and the importance of
weight for an LTA application, researchers were initially focused in solutions for flat
membranes subjected to a uniform distributed load (also called uniform pressure). Since
no membrane solution for an equilateral triangle was found®, circular and square
solutions were reviewed for the purpose of FEM validation.

S. Timoshenko and S. Woinowsky-Krieger suggest membrane solutions for both
circular and square geometries with large deflections. The circular solutions are derived
from the equilibrium equations developed for a circular plate that also carries membrane
forces, but neglecting the terms that relate to bending [45, 402], assuming the vertical

deflection takes the form:

2\
w= wo(l + a—;) (2.28)

9A.C. Ugural has a plate solution for equilateral triangle subjected to a uniform pressure [49, 98-100].
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where:
a, = circle’s radius
r. = radial position at which the displacement is evaluated (0 < r < a,)
w = vertical displacement
w, = center displacement
and then solving for w, iteratively. The circular displacement and stress solutions are then

given by Equation (2.29) and Equation (2.30) [45, 400-404]:

2 Pa\
W= wo(l ¥ —‘2) where w, = 0.662a—*) (2.29)
a: Et
EPa?\"
S, = 0.423( . ) (2.30)

where:
E = modulus of elasticity
P = applied pressure to the surface
S, = stress at the center
t = membrane thickness
These solutions are based on a Poison’s ratio, v, equal to 0.25 and fixed BC along
the edges, and assume linear elastic material properties. Both equations show that the
deflections and stresses vary as the cube root of the pressure. In the case of the square
solution, Timoshenko and Woinowsky-Krieger use energy methods along with assumed
displacement fields to find the solution of a square membrane. They define the strain

energy solely due to stretching of its middle surface as [45, 419-420]:
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Vy=— f f (Nxex + Nyg, + nyyxy)dxdy

where:
V, = strain energy
N, = membrane force in the x direction
N, = membrane force in the y direction
N,, = membrane force in the xy direction
&, = strain in the x direction
g, = strain in the y direction

&yy = strain in the Xy direction

(2.31)

Equation (2.31) is then put in terms of displacement fields, followed by inserting the

assumed displacement fields shown in Equation (2.32), and using the principle of virtual

displacements to solve for w, and c;.

sin il cos i sin M cos ™ cos ™* cosS d
u=cy Si i v=oc Sl oW =w,
2a, 2a, 2a, 2a, 24, 2a,

W2 P . 1/3

e, =0147%2 & , = 0.802as(i)
a, Et
E¢ia\'"’
S, = 0.396(%)
t

where:

u, v, w =X, Yy, out-of-plane displacements

a, = half the edge length
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These solutions are also based on a

v = 0.25 and fixed BC along the edges. Geometric

definitions are shown in Figure 11. Note that 0

the maximum displacement occurs at the center,

= ) ==t == O - 3
o

when x = y = 0. As with the circular solution, both

equations show that the deflections and stresses --- ] === g ==

Y

vary as the cube root of the pressure. Furthermore,
comparison between the circle and square’s Figure 11: Square Membrane Geo-
equations shows that the center displacement and ~ metrical Definitions [45, 420]

stress vary only by 5% and 2%, respectively, when the circle diameter equals the square
edge length.

P. Seide found an alternate solution for the square membrane by iteratively solving
the Foppl’s large deflection equations and Airy’s stress function [47]. He found that the
center displacement is given by:

1/3
Wy = 0.2866{%(?)4] - 0.72261(%)1/3 (2.35)
where: b = membrane’s edge length (b = 2ay, as previously defined in
Timoshenko’s solution). Seide’s solution assumes a v = 0.3. Disregarding the 0.5
difference in Poison’s ratio between solutions'?, Seide’s solution (Equation (2.35))
predicts a center displacement that is 90% of the one predicted by Timoshenko and
Woinowsky-Krieger’s solution (Equation (2.32)). All these solutions are used to validate

the FEM and run convergence studies. See Section 3.4 for more details.

19Changes of v between 0.1 and 0.4 only affects the membrane solution by 10%. See Section 3.5.3 for
more details.
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2.6 Material, Buckling and Collapse Failures

Different failure modes exist on a structure subjected to loading, including material,
buckling and collapse. Material failure is related to the material’s capacity to withstand
stress, in other words, its strength. Buckling failure, on the other hand, is related to the
structure’s geometry. Collapse also relates to the structural geometry, but is characterized
by global failure. All failure modes are related to the structure’s stiffness, which is a
combination of the stiffnesses provided by the material and geometrical shape.

2.6.1 Material Failure.

Material failure comes as a byproduct of the stresses produced by the applied load
on the structure. The point at which the material fails can be defined as when the stresses
reach the yielding point, the ultimate point or somewhere in between. Ductile materials
exhibit both points, where plasticity occurs in between the two points. On the other hand,
brittle materials tend to either lack the yielding point or the same is very close to the
ultimate point.

Considering ductile materials, there are several failure criteria that predict the failure
of a structure, including the Von Mises yield criterion. The von Mises criterion, also
known as the maximum distortion energy criterion, states that failure occurs when the
energy of distortion reaches the same energy for yielding in uniaxial tension. The

following equations shows the von Mises criteria:

1

\/ 5 (01— 00) + (0 = 033) + (011 — o33) + 6 (0%, + 02 +03)| = S/SF (2.36)

34



where:
S F = safety factor
S s = design failure point

o, = stress in the directionsn = 1,2, 3

Material failure, either by yielding or breaking, becomes an important consideration

when evaluating both the icosahedral skin and frame, particularly in the skin/frame

connections where stress concentrates.

2.6.2 Buckling.

Buckling can be defined as an instability
phenomena where a structure is unable to recover
from its initial state of equilibrium after been
disturbed. In general, a loaded structure is said
to be in state of equilibrium if for all displacements
from the equilibrium state, restoring forces arise
such that the structure moves back to equilibrium.
Consider the simple case of fixed end column,
as shown in Figure 12. A force P applied at the top
but away from the centroid causes a moment about

O which tends to bend the column; on the other

P
T }

__77; —=X

0

Figure 12: Fixed Column Subjected

to a Concentrated Load

hand, elastic forces created by its stiffness tend to restore it to its equilibrium position,

remaining statically stable. As P increases, there is a point at which the bending moment

is so high that the column’s stiffness is insufficient to restore it, becoming unstable. At

that point the column has buckled and P becomes the critical load. Linear theory, derived
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with the Euler-Bernoulli beam equation, shows that the critical load is given by

Equation (2.37) [46, 496]:

mEl
412

P, = (2.37)

where:

I = area moment of inertia
L = column length
P, = critical load

Once buckling occurs on a structure, its stiffness changes thus causing nonlinear
response, called post-buckling. The post-buckling response ends once the structure is not
capable of carrying any load. At this point, the structure is said to have collapsed.

2.6.3 Collapse.

Collapse is a geometric phenomenon where the structure suddenly loses its capacity
to resist the applied loading and its geometry distorts; at that point the structure becomes
globally unstable. Collapse can result from ‘local” buckling, e.g, buckling of some
icosahedral frame!! beams triggered by unsymmetrical loading causes the whole
icosahedron to loose its stiffness. Numerically, structural collapse can be characterized as
the moment at which the structure shows a negative stiffness and it must release strain
energy in order to remain in equilibrium [12, Ch. 6.2.4].

The behavior of a structure close to its collapse point usually displays nonlinear
nature. The Newton Raphson method described in Section 2.4.2 works well for nonlinear

problems, but it is unable to cross the buckling points. The Riks method is recognized for

""The term ‘frame’ most commonly refers to a structure composed of an array of beam members
(members that resist both axial and bending loads), which is the case of the icosahedral frame.
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its capacity to trace the buckling and post-buckling behavior up to the structural collapse
point. The importance of tracing the post buckling behavior can be easily seen by
considering the snap-through of a aluminum can. The snap-through behavior of an
aluminum can is shown in Figure 13, both prior to buckling (Figure 13a) and after
buckling (Figure 13b). Note that the can still retains its load-bearing capacity after

buckling.

(a) Pre-buckling (b) Post-buckling

Figure 13: Aluminum Can Snap Through [4]

A common aeronautical application is the use of thin walled stringer stiffened panels
in fuselage structures. R. Degenhardt, H. Klein, A. Kling, H. Temmen and R.
Zimmermann studied the behavior of a stringer stiffened carbon-fiber-reinforced polymer
panel subjected to quasi-static compressive loading, the type of loading wing panels are
subjected to, using both experimental and FE methods [15]. In the FEA, they

superimpose the mode shapes from a linear buckling analysis into the initial geometry to
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create artificial ‘imperfections’, and then use the nonlinear Newton Raphson technique
with adaptive stabilization. In contrast, they use optical digitizing to measure the
imperfections of the real panel when conducting experiments. Scaled load versus
shortening curves for the panel are shown in Figure 14. The panel shows buckling at
about a scaled shortening of 2, and collapse is seen at about a scaled shortening of 3.5.
Since the Newton Raphson technique is being used, collapse is not captured (see the
ABAQUS/Standard curve). Collapse of such panels usually results from buckling of their
stiffeners. The buckling of the skin depends on its thickness and radius of curvature. As
the radius of curvature increases, more panel bending stiffness shifts to membrane

stiffness, increasing its critical pressure, since buckling results from the bending effect.

Ctlampressive Loalding

N

Scaled Load

—Experiment (1)
— Experiment (2)
——ABAQUS/Standard

25 3 35 4

Scaled Shortening

Figure 14: Panel Collapse: Load-shortening Curves [15]
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When analyzing the icosahedron, locating the collapse point is particularly
important. As pressure is transferred from the skin to the frame, each frame member is
subjected to both axial and transverse loads, becoming vulnerable to buckling. On the
other hand, the icosahedral skin does not exhibit collapse in the form of buckling for two
reasons. First, the frame/skin icosahedral configuration subjected to a uniform pressure
only produces tensile stress on each one of the skin triangles. Second, having the skin act
as a membrane eliminates the bending stiffness, ergo, no bending moment would be

present to develop the compressive foces that cause buckling.

2.7 Materials Research

Designs demand different material characteristics that depend on their applications
and requirements. In case of an LTAV, the most important characteristic tends to be
density, but stiffness and strength are also relevant factors. On the other hand, the
pressure difference created by an internal vacuum on a vacuum LTAV puts significant
strain on the structure, therefore maximizing stiffness and strength while minimizing
density is desired.

Establishing the effects of different materials on the performance of a structural
component allows for an optimal selection of materials. Given a design objective, a
performance index is developed that relates the structural response of a component to the
material characteristics. These indexes are function specific, therefore they try to
maximize an aspect of the component’s performance. Consider the icosahedral
skin/frame subjected to the pressure created by the internal vacuum. Part of that pressure
‘felt’ by the skin is transferred to the frame as a distributed load in each beam. If each

beam is treated as a separate component, material indexes can be developed to guide the
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material selection of the icosahedron. Now consider a simple supported beam subjected
to a distributed load, as shown in Figure 15. The objectives in this case are to minimize
the beam’s weight while maximizing its stiffness and strength. Let consider the first
objective: stiffness. One can relate the displacement and weight of the beam to its

stiffness as follows:

k r
5— SkL
384FE1
N A L: Length
P I —— NA: Neutral Axis
| 7 w: force/length
7 L 7 E: Modulus of Elasticity
I: Moment of Inertia

Figure 15: Simply Supported Beam with Distributed Load [23]

k 384EI

=-="—= 2.38
§  5L* (2.58)

W =ALp (2.39)

where:
A = profile area
I = moment of inertia
L = beam length
S = stiffness
k = distributed load

W = beam weight
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p = density of the material
0 = maximum displacement

. . . o _ 2
Considering a circular profile, I = §rpeqn and A = 7ry

. Then substituting / in

Equation (2.38) and solving for rpeqn:

20L4s \'*
beam = (m) (2.40)

Then, substituting A in Equation (2.39) where 7., is given byEquation (2.40),

[20L*S Jol
W=mnlp 3RAnE = eE‘/Z (2.41)

Equation (2.41) establishes an index that relates the beam’s weight and its stiffness. In

results in:

where: e = constant

order to minimize the weight, the ratio (E'/?/p) needs to be maximized. This index is
called the specific stiffness, and it applies to other loading types. For example, the
maximum displacement solution for a beam subjected to a concentrated load, P, is
(PL%)/(48EI). Since this loading also produces bending, the index remains the same.
Therefore, the specific stiffness index is independent of the load type, as long as that load
produces bending. Furthermore, the BC selection, e.g., fixed, simply supported or
cantilever, does not affect the index either. Now considering strength, the stress due to

bending is given by:

—] (2.42)

where:

M), = bending moment
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y = distance from the neutral axis
o, = bending stress
Considering that the maximum stress occurs at y = rp,.,, and substituting / in

Equation (2.42), produces:

M 4M,
o= = 220 (2.43)
1 rbeam
where: oy = design failure stress
Substituting A and Equation (2.43) in Equation (2.39), results in:
am\"
W = ﬂ'Lp(—) = e% (244)
orf O-f

Once more, in order to minimize the weight, the ratio (02/ 3/ p) needs to be

f
maximized. This ratio is called the specific strength index. Is important to state that the
index is dependent on the beam profile. For example, a beam with a rectangular profile
with fixed height and free width, has a specific stiffness index given by E/p [6].

Considering the icosahedral skin, a high specific stiffness is critical to ensure that the
loss in internal volume resulting from the skin deflection does not result in considerable
loss of buoyancy. A high specific strength in both the frame and the skin prevents failure
in connection areas where the stress concentrates.

Other designs factors include manufacturability and diffusivity. The material
properties that yield the desired specific stiffness and strength are, more often than not,
tied to the manufacturing process whereas the diffusivity tends to be a material property.

Both factors are usually overcame by new manufacturing technologies and coatings that

prevent diffusion. Therefore, this literature review focuses on finding materials that
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produce high specific stiffness and strength, such that a relationship between current
(those found on specific materials) and feasible (those needed for design feasibility)
material properties can be established.

Focusing in specific stiffness and strength, various materials searches were made
using MatWeb [7], an Internet-based material library. Materials that were selected for
comparison are shown in Table 1 (empty spaces indicates values that were not available).
Specific stiffnesses and strengths are included in columns 6 and 7-8, respectively, where
Sy and S, are the yield and ultimate stresses. For the purpose of this thesis, materials are
assumed to have linear behavior. Therefore the material properties listed in Table 1 serve
as reference points, and the models considered are related to material properties, not to
the materials themselves. These indexes will be considered to establish various

1icosahedron models. See Section 3.7.2 for more details.

2.8 Vacuum Lighter than Air Vehicles Concepts

2.8.1 A.Akhmeteli and A.V. Gavrilin’s Concept.

A. Akhmeteli and A.V. Gavrilin propose ‘Layered Shell Vacuum Balloons’ as an
LTA design [2]. This patent (pending) starts off by detailing an analysis of an
homogeneous spherical shell, as the one proposed by Lana (see Section 1.2). It starts off
by providing mathematical proof that an homogenenous spherical shell buckles under

atmospheric pressure for any known material, as no material has the needed specific

stiffness (E/p?)'? of 4.5x10°[m’/(kg — s*)] [2, 5] fora v = 0.33.

12The specific stiffness considered here is based on the buckling of a spherical shell, different from the
one defined in Section 2.7, which is based on the bending of a beam.
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Table 1: Material Selection

# Name P (kg/m3) v E (GPa) S,(GPa) S,(GPa) E(Pa)l/z/p Sy(Pa)2/3/p Su(Pa)2/3/p
UHM Unidirectional

1 1870 0.3 440.00 - 3.73 355 - 1286
Carbon Epoxy tubes

2 Zylon 1560 0.37  303.00 5.80 - 352 2069 -
Diamond like Carbon, or

3 2700 0.12 757.00 75.70 - 322 6627 -
Diamond thin film [43]

4 Boron Monofilament 2570 0.33  400.00 - 3.60 246 - 914
Nanocyl NC7000 Thin

5 1650 0.2 1000.00 10.00 30.00 606 2813 5851
Multi-Wall CNT [56]

6 Beryllium S-200, Tubing 1844 0.18 303.00 0.40 0.8 299 294 467
CoorsTek Boron Carbide

7 2650 0.18 379.00 1.70 - 232 538 -
Reaction-Bonded
Duramold-2 Cast Alu-

8 2800 0.33  738.00 0.14 - 307 96 -
minum Mold Plate
BALTEK SB.150 Struc-

9 247 0.33 5.76 0.02 - 307 337 -
tural End-Grain Balsa
Honeywell Spectra 1000

10 970 0.33 172.00 - 3.00 428 - 2144

Fiber

p = density, v = Poison’s ratio, £ = modulus of elasticity, S, = yield strength, S, = ultimate strength




It is important to realize that we have come far, material wise, from what we had
when Lana proposed the use of copper to construct hollow spheres. The specific stiffness
of Carbon Nanotubes (CNT) research grade is about 3.7x10°[m’/(kg — s*)] [36], while
the cooper specific stiffness is 0.018x10°[m°/(kg — s*)] [35]; and even though CNT with
such properties is not yet commercially available for shell type applications, such a
difference in specific stiffness suggests that we are not far from a feasible point.

Akhmeteli and Gavrilin claim that a sphere constructed as a sandwich type structure
where thin outer and inner layers are interconnected by a core layer provides enough
specific stiffness to resist buckling due to an atmosphere of pressure while allowing for
positive buoyancy using commercially available materials; set inner and outer layers
would have approximately the same mass while the core layer would be significantly
thicker.

Sandwich configurations indeed increase the
specific stiffness of structures due to the relatively
high stiffness of the external layers combined N\
with a low stiffness, low density regardless, thick \
core that not only transmits shear but increases
bending stiffness as more mass is located away N ﬂ!‘ﬁg
from the neutral axis. A sandwich panel made of ”‘UM
Figure 16: Sandwich Panel. Made of

aluminum honeycomb core and skins impregnated

with epoxy resin is shown in Figure 16. aluminum honeycomb core and skins

Detailed analyses of the layered shell vacuum impregnated with epoxy resin [39]
balloons concept are provided in Reference 2.

2.8.2 T.T Metlen’s Concepts.

T.T. Metlen presents various LTA concepts, including the icosahedron and the

rotating cylinders. For the icosahedron, he performed an optimization of a 1.1 ft (0.33 m)
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(a) Geodesic Sphere f = 1 (Icosahedron) (b) Geodesic Sphere f =2

Figure 17: Geodesic Sphere [38, 47]

in radius geodesic sphere, in the form of a frame, where the objective was to minimize
the weight to buoyancy of the frame, in other words, increase the buoyancy of the frame
(detailed calculations of the weight to buoyancy ratio for the icosahedron are found in
Section 2.2). The icosahedron is the simplest version of the geodesic sphere, as, shown in
Figure 17a. If the edges of each triangle in the icosahedron are divided in two, creating
three new vertices per triangle where all the vertices lie on the surface of a circumscribed
sphere, each icosahedral triangle then becomes four triangles, as shown in Figure 17b.
The geometric frequency is then defined as the number of divisions along the edges, such
that the icosahedron represents a geodesic sphere of frequency 1, and the geodesic sphere
becomes a ‘perfect’ sphere as the frequency tends to infinity. Metlen included the
frequency as part of the optimization variables to evaluate its buoyancy effects. He
showed that a frequency of 1 (the icosahedron) is the optimal configuration. Figure 18

shows the average and maximum stresses versus frequency. Note that for the
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icosahedron, the maximum stress is equal to the mean stress. This result is attributed to
the symmetry that is otherwise lost for frequencies greater than 1, which cause
asymmetrical distribution of the pressure forces to the frame, increasing the maximum

stress on the members [38, 111].
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Figure 18: Stress versus Geometric Frequency of a Geodesic Frame [38, 112]

Metlen also considered the ‘Rotating Cylinders’. The concept refers to having long
thin skin cylinders rotate about their axis of symmetry, such that the centripetal force
exerted by the skin would provide the additional stiffness needed to counteract the
atmospheric pressure when an internal vacuum is created. He proposed the vehicle shown
in Figure 19, composed of two smooth thin shell rotating cylinders mounted vertically

into a gondola with propellers.
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Considering the aerodynamics effects, the power
requirements and its buoyancy, he found that for this
vehicle to be feasible with a W/B less than 1, it would
need to be 305-3100 meters long with cylinders radius
of 1-10 meters for a W/B of 0.51, and it would need
to be launched and operated above SL altitude where

Figure 19: Rotating Cylinders

the drag is reduced by 99%, compared to the drag at SL. Vehicle [38. 56]

2.9 Summary

The homogeneous sphere has proven to be the best geometric shape for an LTA
structure subjected to a vacuum, provided that a stiff, strong and light enough material
exists, which as of today, it does not. That drives us to try alternate geometric shapes that
provide the stiffness current materials lack. One of these geometries is the sandwich type,
which Akhmeteli and Gavrilin claim to be feasible with today’s materials. Another
geometrical shape is the frame/skin icosahedral configuration, which Metlen researched
as part of his thesis. See Section 2.8 for a summary of their proposed designs.

The lack of published literature on the icosahedron provides the opportunity to
considered classical solutions and failure theory. Membrane solutions such as the one
suggested by Timoshenko and Woinowsky-Krieger [45, 400-420], and Seide [47] provide
a venue to compare against the FEM. Buckling and material failure theory provide
background on the expected failure modes for the icosahedron, and its weakness points.
Additionally, the material review establishes feasible ground for material properties that

can be used to evaluate the icosahedron.
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The structural knowledge can be combined with the LTA concept by the W/B. The
W/B equations provide a venue of evaluating the buoyancy of the structure for any type
of vacuum and altitudes up to 65,000 ft. Furthermore, reduced forms can be used to
estimate the geometric properties needed in order to achieve the desired W/B. Given the
geometric properties and theoretical background, nonlinear analysis can be performed in
order to evaluate the structural behavior of the icosahedron, and used to calculate the

W/B of the structure accounting for the skin deflection.
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III. Model Development

3.1 Overview

The Oxford dictionary defines a model as “a three-dimensional representation of a
person or thing or of a proposed structure ...” [41]. This definition brings an important
question: what is a good representation? Answering this question requires running
experiments or tests that verify the expected performance of the system being considered,
and then making modifications as appropriate. But experimentation without proper
modeling is usually infeasible and cost ineffective. Therefore, it is the modeler’s job to
try and provide the most accurate representation of the system. In order to do that, a
validation process must be used. The difficulty of such a process depends on the
complexity of the system and whether or not research on that system exist and is
available.

In the case that the system does not exist, the validation process can be based on
current systems that are related to the one considered. In case of the system considered in
this thesis, an LTA icosahedral structure subjected to a vacuum, first: a vacuum LTAV is
yet to be constructed, and second: limited research on the structural response of an
icosahedron was found. On the other hand, the principles behind LTAV and the structural
response of individual components is well understood. Therefore, the validation process
was established based on the research found and analytical solutions of structural
components that relate to the icosahedron.

The FEA relies in the discretization of a system to evaluate its structural response.

This discretization is carried out by the use of ‘elements’ that intend to represent such a
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system, therefore the amount and type of elements that are needed to carry out a correct
representation become a question. Another question is which modeling techniques best
represent the system that is being analyzed. Other questions that arise during the
modeling process might not be related to the validation, but are rather related to the
design itself and whether some design features improve or hinder the overall performance

of the system. The following questions arose when considering the icosahedral structure:

1. How many elements are needed in order to obtain accurate results?

2. At what thickness does the skin behaves like a membrane? In other words, when is

the skin thickness thin enough to loss its bending stiffness?
3. What is the skin reaction to changes in material properties?

4. What material properties are needed such that skin deflection does not cause

significant loss of buoyancy?
5. What BC are appropriate for the icosahedral model?

6. Considering the frame performance, which is better, hollow or solid beams?

These questions needed answers prior to considering the overall structure. Figure 20
shows the studies conducted to answer such questions. First, the finite element techniques
were validated by comparing the square and circular membranes solutions, shown in
Section 2.5 against the membrane and shell elements, latter discussed in detail. Second, a
triangular model that represents the icosahedral skin was used to run convergence,
thickness and material studies. Third, a frame model with an equivalent force method

was used to run a convergence study, verify the effects of different BC and compare the
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Figure 20: Modeling Studies. Shows an overview of the studies made prior to and with the

icosahedral model in an orderly fashion.

effect of solid versus hollow beams. Finally, all the results were gathered and used to

evaluate the icosahedral model.



This chapter starts off by discussing the process used to run all studies and analyses,
then moves to a discussion of the dimensionality selection and the rationale behind it.
Once that is established, the finite element techniques and their validation are presented.
Afterward, the studies ran with triangle and frame models and their results are discussed.
Finally, the conglomeration of techniques that are used to establish and evaluate the

icosahedral structure is presented.

3.2 Process

The FEA was conducted in this research by using Abaqus [11] in combination with
Matlab [34]. Abaqus itself provides three venues to analyze models: the Complete
Abaqus Environment (CAE), the input file and the Python computing language [44]"3.
Each model considered in this research was initially created using CAE, and the Python
code was then extracted and modified to accommodate for changes in geometry, meshing
characteristics, analysis type, BC, etc. Once the modified Python code was completed,
Matlab was used to adapt, run and extract results from models. This process, shown in

Figure 21, was repeated such that results could be compared.

As shown in Figure 21, the "Main Routine’ sends the FE settings, material inputs
and geometric inputs to the subroutine through a counter that establishes the amount of

analyses performed within it. Within the subroutine, the caller function takes the inputs

13Each of the modeling venues has its advantages and disadvantages. For example, the input file provides
direct access to the FE processor without the need of creating the visual model, becoming advantageous for
simple models that are already discretized and when conditions such as force magnitudes and boundaries
change repeatedly, among others. On the other hand, CAE provides visual access to modules and a
more guided process to create, analyze and view the model’s results, but repetitive processes become time
consuming and larger in storage size. Python provides access to aspects of both, it takes the same steps
as with the CAE. But once it is created, the Python code can be modified to serve almost any purpose.
Therefore, it becomes a great tool for repetitive processes where various modeling parameters can change.
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Inputs and settings are controlled in the main

routine. Python codes establish each model, and the Matlab caller function sends those models to

Abaqus for analysis. The results are then imported with Matlab for comparison.

and the FE settings from the main routine and creates a Python code with them, which are

then sent along with the model and output extractor python codes to Abaqus for analysis.

After Abaqus is done with the analysis, the results are read back with Matlab. This

process is then repeated according to set specifications on the main routine. Finally,

results are compared, graphed and/or tabulated in Matlab. Python codes for each of the

models are included in Appendix B. Matlab routines and functions are included in

Appendix C.
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3.3 Dimensionality

The dimensionality of the icosahedron was one of the first considerations. The
history of LTAV shows designs made to carry people and cargo, ergo they where large in
size. History also shows that this type of vehicle suffered landing and maintenance
problems, among others. Trying to move away from those problems, a small structure
was considered; one that perhaps serves to carry small payloads and that was easy to
transport and deploy. Therefore, the icosahedron dimensionality for all models
considered in this thesis was chosen at that point to be 1 ft (0.3048 m) in diameter,

measured from opposite vertices passing through the center.

3.4 Finite Element Techniques and Validation

This section introduces the first set of studies conducted, as shown in Figure 20.
First, the type of elements and the analysis techniques are described. Then, the studies
related to the square and circular membranes are presented.

3.4.1 Elements.

Three types of elements are considered: (1) the beam element, B32; (2) the
membrane element, M3D?3; and (3) the shell element, S3R. The beam element is used to
represent the icosahedral frame members; the membrane and shell elements are used to
represent the icosahedral skin. For all of them, the element coding is established by
Abaqus.

Beam theory allows us to approximate the behavior of a slender structural
component, such as the frame members, by reducing it dimensionally from the ‘true’
three-dimensional to a one-dimensional behavior. The main benefit of using such

approximation is that beam elements are geometrically simple with less DOF, compared

55



to three-dimensional elements, which reduces the computing power needed for analysis.
Although, this approximation relies on the assumption that the deformation can be
estimated from variables that are functions of position along the beam axis only. The B32
element, specifically, is a quadratic element that is used in a three-dimensional space,
based on Timoshenko’s beam theory. A quadratic beam element is composed of three
nodes with six DOF at each node, three translational and three rotational, therefore is
capable of capturing the effects of both axial and transverse loads. The main difference
betweent Timoshenko’s and Euler-Bernoulli’s beam theories is that Timoshenko’s include
transverse shear deformation, which is the capacity of capturing in-plane deformation
caused by the beam’s bending moment. The B32 element is used for all the analyses
involving the frame. See Section 28.3 of Reference 12 for more details.

Considering the skin, two type of elements are compared: a membrane element,
M3D3, and a shell element, S3R. The analytical and FE definition of what a shell and a
membrane are is the same, with the exception that both element types can be applied to
either flat or curved surfaces. In other words, the shell element carries both membrane
and bending stiffnesses and can be used for both initially flat and curved surfaces [12, Ch.
28.6], while the membrane only carries membrane stiffness but can still be used for both
initially flat and curved surfaces [12, Ch. 28.1].

The M3D3 is a three-dimensional triangular surface element with three nodes, in
which each node has three displacement DOF. This element is commonly used to
represent thin surfaces with no bending stiffness, therefore has no rotational DOF [12,
Ch. 28.1.1]. The S3R is also a three dimensional triangular surface element, but it has all

six DOF such that it carries both membrane and bending stiffnesses, with finite
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membrane strains. A pictographic representation of the triangular element, as well as the
DOF for both shell and membrane elements, are shown in Figure 22. In regards to the
DOF numbering system: the displacement DOF are 1, 2 and 3 in the X, y, and z
directions, respectively, and rotational DOF are 4, 5 and 6 about the X, y, and z directions,
respectively. The main reason of using triangular elements over square elements is that

the formers allow for an homogeneous mesh in each icosahedral face.

2
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3

1,2,3: displacement degrees of freedom in the 1,2.3 directions, respectively.

4,5,6: rotational degrees of freedom corresponding to the 1.2,3 directions, respectively.

Figure 22: Triangular Surface Element Representation

Additionally, the S3R is a hybrid element that uses thin shell theory and transitions
to thick shell theory as thickness increases, making it a general purpose element. The ‘R’
stands for reduced integration, which uses a lower order integration to form the element
stiffness. One of the benefits of reduced integration is the use of less integration points,
resulting in less computing time and storage space. Another benefit is the accuracy of
results. The strain and stress in reduced integration elements are calculated at Barlow
points, which provide optimal accuracy [8]. This sometimes can be comparatively

observed in large displacement analyses with transverse loading where fully integrated
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elements show overly stiff behavior associated with shear-locking, while reduced
integration elements show relaxed and improved performance [30]. The drawback of
using reduced integration is that it can introduce zero-energy deformation modes that
produce zero strain and stresses, called hourglass modes, leading to inaccurate results.
Abaqus controls hourglass modes by adding a small artificial stiffness to zero-energy
modes [13, Ch. 3.1.1]. Both elements are used in convergence studies related to the skin,
mainly to locate the transition point at which the shell element shows membrane behavior
as a result of its thinness.

3.4.2 Analysis Techniques.

Two aspects are considered when selecting the analysis technique to evaluate the
various models used in this thesis. First, large displacement analysis is inherently a
nonlinear problem. Abaqus has two techniques to solve nonlinear static problems: Riks
and Newton Raphson; the latter is used in this thesis. A one-dimensional description of
the Newton Raphson technique is presented in Section 2.4.2. The main difference
between them is that a load (in load controlled analyses) or displacement (in
displacement controlled analyses) input is required for the Newton Raphson, while the
Riks solves simultaneously for load and displacement. Unlike the Newton Raphson, the
Riks technique has the capacity to follow solution paths where snap-through and
snap-back occurs, capturing buckling and post-buckling behavior of a structure. These
types of global instabilities are well managed with Riks, but instabilities that cause local
transfer of strain energy from one part to the other within the model might cause
convergence issues. On the other hand, the Newton Raphson technique has the capacity

of adding adaptive automatic stabilization to equilibrium equations. Stabilization adds
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viscous forces on the form F, = ¢cM*v to overcome those local instabilities, where M* is
an artificial mass matrix calculated with unit density, c is the damping factor and v is the
nodal velocities vector. The ‘automatic’ feature adds volume-proportional damping and
the ‘adaptive’ feature varies the damping factor spatially and/or with time, controlled by
the convergence history and the ratio of dissipated energy to total strain energy. This
allows for a converged solution while minimizing the effect introduced by damping. The
maximum ratio of dissipated energy to total strain energy is set by default and left at
0.05[12, Ch. 7.1.1].

The second aspect considered in the analysis selection is the membrane behavior.
Initially flat and stress free membranes have no stiffness; therefore out-of-plane loading,
such as pressure, causes numerical singularities and convergence difficulties. One option
is to pre-stress the membrane such that it can acquire stiffness. Another option is the use
of stabilization, such that for the first increment where the membrane has no stiffness, the
viscous forces eliminate the singularities and once some out-of-plane deformation has
developed, the membrane acquires stiffness, resisting out-of-plane loading. Therefore, the
static step with adaptive automatic stabilization for a maximum ratio of dissipated energy
to total strain energy of 0.05 is used for all nonlinear analyses conducted in this thesis.

Linear static and linear buckling analyses are also conducted in this thesis. The
linear static analysis is a procedure that solves for the equilibrium of a structure given the
applied loads assuming there is no stiffness changes, therefore solving for displacements
without the need of an iterative process. This procedure is only used to compare the
relative behavior of hollow beam profiles versus the solid profile when considering the

frame standalone. The linear buckling analysis is a perturbation procedure that estimates

59



the eigenvalues and vectors that represent the critical (bifurcation) loads and the mode
shapes corresponding to each critical load, respectively. This procedure is used to
estimate the mode shapes of the icosahedral structure, as well as as to evaluate the effect
that hollow beam profiles have in the critical load.

3.4.3 Square Membrane.

Referring back to Figure 20,

.
the first step of the modeling process is to validate \ S Ny L
the proposed FE techniques in order to properly Y L 7 ™ S~
use them in the icosahedral structure. Three | - : 7 /
elements have been described: B32 (beam), S3R YL e . /
(shell) and M3D3 (membrane), along with several \&- - e /
analysis techniques, including the Newton Raphson N N . |
L R
with adaptive automatic stabilization. Additionally, = AN

two analytical solutions for the square membrane Figure 23: Square Membrane

are presented in Section 2.5 by Equation (2.32) Model. Arrows represent the surface
to Equation (2.35). These solutions are used pressure. Orange symbols represent
to run convergence studies that not only validate the fixed displacement boundary condi-

the analysis techniques, but also provide the correct tions in the x,y, and z axes.
number of elements needed in order to achieve an accurate solution for the square
membrane, considering both S3R and M3D3 elements.

The square membrane model is composed on a flat surface with the displacements
DOF tied around the edges and SL pressure load applied to and parallel to the entire

surface. The model is shown in Figure 23; the symbols at the edges represent the BC and
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Table 2: Square Membrane Model Properties

Area (m?) 0.0111

Dimensions (m) leage = 0.1054

Thickness (m) Se-5

Load (Pa) 101,325

Boundary Conditions U1=U2=U3=0 along edges

) Static Nonlinear with Adap-
Analysis
tive Automatic Stabilization

Modulus of Elasticity (GPa) 303

Poison’s ratio 0.3
Density (kg/m3) 1560
Element Type M3D3/S3R

the arrows represent the pressure load. The BC were selected in agreement with
analytical solutions; having the rotational DOF free extends from the fact that the
membrane has no bending stiffness,since it is carried through rotations. Using the SL
pressure as the magnitude extends from the fact that an LTAV under a vacuum is
subjected to no more than the pressure at SL (details are discussed in Section 2.3). The
model has the same surface area as one triangular face of the icosahedral skin.
Additionally, it was discretized by selecting the amount of elements desired per edge,
called ‘seeding’, where all edges shared the same seeding number and element size,

producing a homogeneous mesh. Model properties are listed in Table 2.

The purpose of considering both elements is to evaluate their behavior against

analytical solutions and to confirm that the bending stiffness diminishes in the shell
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element for small thicknesses, validating the use of BC with free rotations. For this study,
the membrane is assigned a thickness of 0.05 mm, thin enough to expect membrane
behavior out of the shell element. The study was conducted by varying the edge seeding
from 8 to 43 seeds, in increments of 1, resulting in 128 to 3698 elements, respectively. In
order to compare the FE solution with analytical solutions, the center displacement is
selected as the delineating factor for convergence. Results obtained from analytical
solutions demonstrate that they predict the center displacement within 10% of each other.
It was found that the FE solution agrees very well with Seide’s solution, while
Timoshenko’s solution remains within 10% of the rest. Element’s center displacement
magnitude and % error vs number (#) are shown in Figure 24, for both FE and Seides

solutions.

Note that both elements agree very well with each other for every number of
elements. Also, results show that 390 elements are enough for convergence within 1%,
using either element. There is significant oscillation in both elements as a result of the
numerical approximation, but it diminishes as the number of elements increases. Results
obtained from all solutions are tabulated in Section A.1. The Python code that produces
the square membrane is included in Section B.2.

At this point, FE techniques has been validated for a rectilinear configuration, for
both shell and membrane elements. But the question regarding the effect of thickness on
the solution is still unanswered.

3.4.4 Circular Membrane.

Two studies were conducted for the circular membrane: a convergence study and a

thickness study. As with the square membrane, the purpose of the convergence study is to

62



x 10~

-2.62— \ ‘ 3 ‘ ‘
=+ S3R Element —6— %E: S3R/Seide
o3} : + - M3D3 Element || 9%E: M3D3/Seide
) : Membrane(Seide) o5l P |

-2.64] : .
E 1 2t 1
S -2.65 1
£ =
g s |k
5 7266 1 w 1.5F [ |
2 8 |
a
T 267} 1
o i
()
O

-2.68} 1

269} = = |

. ‘ ‘ | . v@g??«“w&\y/ﬁh/@\v §s
"0 1000 2000 3000 4000 0 1000 2000 3000 4000
# Elements # Elements

Figure 24: Square Membrane Convergence Study Results: Center Displacement and %

Error versus # of Elements

validate the FE techniques and find the discretization that allows an accurate solution. On
the other hand, the purpose of the thickness study is to find the thickness point at which
the shell starts behaving like a membrane. In this case, that point in not particularly
important for the analysis of the icosahedron, but confirms that the point can be found
within reasonable thicknesses.

The circular membrane model features are similar to those of the square membrane
model. It is composed on a flat surface with the displacements DOF tied around the edge
and SL pressure load applied to and parallel to the entire surface. The circular membrane
model is shown in Figure 25; symbols at the edge represent the BC and arrows represent

the pressure load. This model also has the same surface area as a triangular face of the
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icosahedral skin. Additionally, it was discretized by seeding the edge with the same

element size. Model properties are shown in Table 3.

Figure 25: Circular Membrane Model. Arrows represent the surface pressure. Orange symbols

represent the fixed displacement boundary conditions in the x,y, and z axes.

The circular membrane convergence study consisted of discretizing the mesh made
of M3D3 elements, from 5 to 51 edge seeds, in increments of 1, representing 5 to 475
elements, respectively. For each analysis run, the center displacement and von Mises
stress were compared against the analytical solution, provided by Equation (2.29) and
Equation (2.30). Convergence study results are shown in Figure 26. Note that for more
that 50 elements, the error is less that 5% for both the displacement and stress.
Furthermore, results tabulated in Section A.2 show that 172 elements are sufficient to
achieve convergence within 1% for both displacement and stress. While stress increases
exponentially with the number (#) of elements, center displacement shows periodic

behavior that damps out as the number of elements increases.
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Table 3: Circular Membrane Model Properties

Area (m?) 0.0111

Dimensions (m) diameter = 0.119
Thickness (m) le-3

Load (Pa) 101,325

Boundary Conditions U1=U2=U3=0 along edges

) Static Nonlinear with Adap-
Analysis
tive Automatic Stabilization

Modulus of Elasticity (GPa) 303

Poison’s ratio 0.3
Density (kg/m3) 1560
Element Type M3D3/S3R
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Figure 26: Circular Membrane Convergence Study Results: Center Displacement and

Stress versus # of Elements
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The thickness convergence study comparing the analytical solution against the shell
(S3R) element for thicknesses from 5.0x107 to 2.0x10~' (m). The model had the same
properties listed in Table 3, but the mesh was fixed at 452 elements and different
thicknesses. One of the main characteristics of the shell element is that even at small
thickness, it carries bending, therefore a cross-sectional stress distribution is expected
(see Figure 10 in Section 2.5). Ideally, there is a thickness point at which that stress
distribution approaches a constant value across the entire thickness, as the membrane
does. Center out-of-plane displacement and stress versus thickness are shown in
Figure 27, for both the shell element and the analytical solution. Results show a fairly
constant % error in both displacement and stress for thicknesses less than 0.5 mm. But
there is a significant jump in % error for thicknesses less than 0.05 mm. Furthermore,
results after that point have a significant change in slope, suggesting that bending stiffness
became significant. The tabulated results, included in Section A.3, indicate that a
thickness less than 0.7 mm produces solutions agreement within 5%. The stress
analytical solution is compared against the shell stress at the mid-plane. The Python code

that produces the circular membrane is included in Section B.1.

At this point, the FE techniques, specifically the use of the Newton Raphson
technique and both membrane and shell elements to model the behavior of initially flat
membranes, have been validated with both square and circular models. In order to
evaluate the membrane behavior of the icosahedral skin, a triangular model is considered

next.

66



x10° X« 10°

0 70 . 100
- — © — Shell: Bottom
-7 % —*— Shell: Middle
-1 %8 160 3.3703%| —*—  Shell: Top <
g ® 2% 4 -+ Membrane(Analytical) s
I ~ % Difference 2
< L 55
=2 {50 4 ¥ 5
£ ” ] £
5 ~ 8 25277% 2
£ -3 {a0S @ 3 <
S S 0 )
= s 0 i 50 ©
2 ;2 2 = 2
S -4 30£ 5 1.6852 =
g | ° 3 &
Q
& 2
(&} | c (]
,5J§ 20 8 <
K 0.8426 g
-66 — © — Shell 110 e
¥ * -~ Membrane(Analytical)
% Difference

_7 . n n 0 ol E

0.5 1 15 0 . 1 . 2

Thickness (m) X107 Thickness (m) x107

Figure 27: Circular Membrane Thickness Study Results: Center Displacement and Stress

versus Thickness

3.5 Triangular Membrane

In order to answer the first four 2\ N
questions formulated on Section 3.1, a triangular l\v %\a\
model that represents the icosahedral skin il . \ N \
is considered. The model consists of an equilateral k\ v g e - : \
triangular surface of the same area as a triangle of . IH\ & = ) - _@l.\.\
the icosahedral skin, based on a icosahedron with Z"t‘x i?.ﬂ'... I AN 'j}

a diameter of 0.3048 m (1 ft.). The model is shown Figure 28: Triangular Membrane
in Figure 28; symbols at the edges represent the Model. Arrows represent the constant
BC and the arrows represent the pressure load. This pressure applied to the surface and or-
model assumes that the frame remains rigid during ange symbols represent the fixed dis-
deformation, therefore all three edges have fixed placement boundary conditions in the

displacement DOF. Nonetheless, the rotational X,y, and z axes.
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Table 4: Triangular Membrane Model Properties (unless otherwise stated)

Area (m?) 0.0111

Dimensions (m) leage = 0.1602

Thickness (m) le-3

Load (Pa) 101,325

Boundary Conditions U1=U2=U3=0 along edges

) Static Nonlinear with Adap-
Analysis
tive Automatic Stabilization

Modulus of Elasticity (GPa) 303

Poison’s ratio 0.25
Density (kg/m3) 1560
Element Type M3D3/S3R

DOF remain free due to the expected membrane behavior. As with previous models, the
SL pressure is used throughout the surface. Model properties are listed in Table 4. The
Newton Raphson with adaptive automatic stabilization technique is used for all analyses

involving the triangular model.

From the W/B point of view, having these boundary conditions limits the amount of
volume loss since the skin deflection around the edges is eliminated. From the structural
point of view, using such model can underestimate the effect that the frame has on the
skin since former, when connected to the latter, will not remain rigid. On the other hand,
using such a model provides a venue to efficiently estimate skin behavior. The Python
code that produces the triangular membrane is included in Section B.3.

First, a convergence study is conducted to find the discretization needed in order to

achieve a converged solution with the membrane element. Second, a thickness study is
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conducted to find the point at which the shell element behaves like a membrane. Finally,
a material properties study is conducted to understand changes in membrane’s behavior
due to variations in material properties. Is important to clarify that, since no analytical
solution was found for the triangular membrane, studies conducted for this thesis
compare the relative performance of the elements considered.

3.5.1 Convergence Study.

This convergence study was conducted by seeding homogeneously the edges of the
membrane (M3D3) element (shown in Figure 22), such that each edge has the same
amount of elements. This allows for a mesh composed of elements of the same size.
Seeds along the edges are shown in Figure 29, for both 5 and 10 seeds per edge. Note that
all edges have the same amount of triangles adjacent to them.

The study was conducted in increments of one, from 5 to 50 seeds per edge,
representing 25 to 2296 elements, respectively; for a total of 46 analyses. The
displacement and stress at the center were tracked for convergence by using two methods.
First, the % difference was calculated by considering the i seeding value against the i — 1
value. Second, the % difference was calculated by considering the i seeding value against
the last, i.,4, value. Results are shown in Figure 30. Note that while the displacement
converges very steadily, the stress has more variation and a higher % difference.
Nonetheless, results indicate that 324 elements (18 seeds per edge) are sufficient for
displacement and stress convergence within 1% and 5%, respectively, compared to the 50

seeds case. Results are tabulated in Section A 4.
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(a) 5 Seeds per Edge (b) 10 Seeds per Edge

Figure 29: Triangular Membrane Mesh Comparison
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Figure 30: Triangular Membrane Convergence Study Results: Center Displacement and

Stress versus # of Elements

3.5.2 Thickness Study.
As with the thickness study of the circular membrane, the purpose of this study is to
find the thickness point at which the shell element behaves like a membrane. Since there

is no analytical solution in this case, the membrane element is used for comparison. The
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model is discretized with 1296 elements (50 seeds), which is above the point of
convergence. Quantities considered are center displacement, von Mises stress and strain
energy. In case of the shell element, the top, middle and bottom stress are considered.
Strain energy provides a globalized measure that relates both stress and strain results of
the entire model, contrary to displacement and stress which are localized values.

The study yielded results similar to those of the thickness study conducted for the
circular membrane (see Figure 27), therefore plots are not presented in this section.
Tabulated results, included in Section A.5, indicate that a thickness #;, < 0.02 mm
provides a shell and membrane agreement within 1%. Therefore, the skin thickness on
further analyses will be verified to identify if this point is being crossed.

3.5.3 Material Properties Study.

The purpose of the material properties study is to approximate the icosahedral skin
response due to material properties changes, where the skin is represented by the triangle.
The ideal W/B is set at 0.4 (see Equation (2.14)) and the skin thickness results from the
given density and set W/B (see Equation (2.15)). This study was performed with 400
elements, for both M3D3 and S3R elements, but since they provided almost identical
results, only M3D3 results are presented. To analyze changes, a three-dimensional input

space was created with the following parameters:

412 < p <3000 kg/m?
100 < E <1000 GPa
0.1<v<04

where:

p = density; E = modulus of elasticity; v = Poison’s ratio
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Vectors of length 25 were created for p and E, where initial and final values of each
vector is given by the limits provided. On the other hand, v was changed by 0.1
increments within the provided limits. A total of 2500 analyses were done based on the
three dimensional design space created by their combinations. The density range was
selected such that the maximum skin thickness did not exceed 0.2 mm (the maximum
value at which the shell element behaves as a membrane element). Given each input
variable combination, the following quantities were considered: center out-of-plane
displacement, strain energy and skin W/B after deformation. Center displacement,
important to quantify maximum displacement, provides a local or node dependent result.
On the hand, strain energy provides a globalized measure that relates both stress and
strain results of the entire model.

The skin W/B after deformation was

calculated by including an estimation of the volume
lost due to triangle’s deflection. To estimate

the volume loss, the deflected surface is integrated o ¥
P

limits are given by Equation (3.1), as a result Y

T
numerically using Matlab functions’ ‘quad2d’ [48]
with ‘gridddata’; the latter fits the triangular surface e

given by the deflected nodes. The integration

.

of the established geometry shown in Figure 31. Figure 31: Triangular Membrane

Geometry. O represents the center and
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Displacement and strain energy curves are shown in Figure 32 for constant values of
modulus of elasticity and Poison’s ratio. Ideally, less displacement and strain energy is
better. Changes in modulus of elasticity cause significant response in the triangle
(Figure 32a). Furthermore, changes can be as high as 73% between the limits considered,
as shown by tabulated results in Section A.6. On the contrary, there is little variation
between Poisons ratios (Figure 32b); in fact, high Poison’s ratios lead to stiffer responses
by no more than 10%. Another consideration is the material’s density. Low material
density leads to high skin thickness, as shown by Equation (2.15). It can be shown that
the response can change up to 64% within density limits. Additionally, strain energy and
center displacement are compared against modulus of elasticity for fixed Poisson’s ratio
and density in Figure 33. Note that the response changes considerably for low moduli,
suggesting that there is a trade space. Nonetheless, the final W/B (including the volume
reduction) shows the following range: 0.41 < W/Bg, < 0.44 within the design space
considered, therefore not graphed here. Details are discussed in Section A.6. Note that
regardless of the material properties selected, large displacements are observed. From a
numerical point of view, this can become an issue, but the use of stabilization in the
Newton Raphson technique allowed for a smooth convergence. The analyses showed
sensitivity to the selection of the initial load increment. This was managed in Matlab by
automatically adjusting the initial load increment every time convergence issues arose

and rerunning those analyses.
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and Strain Energy versus Modulus of Elasticity

At this point, the model discretization and the expected skin behavior are known,
including the effect of thickness, density, Poison’s ratio and modulus of elasticity.
Furthermore, it was found that changes in material properties have minimum effect in the

skin W/B.

3.6 Frame Standalone

The icosahedral frame standalone model provided a decision guide for the geometric
characteristics and the proper BC. Three studies were conducted: a convergence study, a
beam profile study and a BC study. Prior to conducting such studies, the geometric

definition of the icosahedral structure was established. Additionally, an important
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question was considered: how can the pressure applied to the icosahedral skin be modeled
in the frame? This question was answered with the use of the coupling constraint.

3.6.1 Geometric Definition.

The coordinates of each of the 12 icosahedral
vertices were obtained by using the Matlab b
function: icosahedron_coordinates.m (provided
in Section C.2). This function was created with

a coding provided by T.T. Metlen [38, 141]. Since

each of vertices lies on an imaginary circumscribed
rsin¢cosd

sphere, the location of each vertex is established

rsin ¢sin @

using of spherical coordinates and then transformed =
into Cartesian coordinates. The spherical Figure 34: Spherical to Cartesian
coordinate system is defined as shown in Figure 34, Coordinates Systems Transforma-
where @ is an angle measured from the x axis to the tion [3]

vector OP, ¢ is an angle measured counterclockwise from the xy plane to the vector OP,
and r is the length of vector OP such that OP = OP(r, 6, ¢); with transformation into the
Cartesian coordinate system: x = r sin¢g cosf, y = r cos¢ sinf and z = r sing. Placing the
icosahedral center at (0, 0, 0), top and bottom vertices can be taken as the north and south
poles, defined at (r, £90°, 0), for any r value (see Figure 5). Of the 10 vertices left, five
are located at the upper hemisphere equally spaced by 6 = 72° at a constant ¢ = 26.6°,
and the other five at the lower hemisphere equally spaced by 6 = 72° at a constant

¢ = —26.6°. Once the icosahedron radius, r, is established, the spherical coordinates are

transformed to Cartesian. See Reference 38 for more details. Note that in order to
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calculate the volume (Equation (2.5) to Equation (2.10)), a geometric approach was
taken, rather than a trigonometric one, but both yielded the same angular relationships.

3.6.2 Coupling Constraint.

The coupling constraint is a surface based constraint provided by Abaqus that
couples the motion of a surface’s collection of nodes to the motion of a surface’s
reference point [12, Ch. 33.3.2]. Once the model is discretized, the reference point
becomes a node, allowing for the surface’s mesh to couple with the reference point; the
surface’s coupled nodes are referred as ‘coupling nodes’. Abaqus offers various types of
coupling constraints, including the distributed coupling. In general, distributed coupling
constraints the rotation and translation of the reference node to the coupling nodes. It
transmits loads and BC applied to the reference node through the use of weight factors at
the coupling nodes [37]. It distributes loads such that the resulting forces (and moments)
at the coupling nodes are equivalent to forces (and moments) at the reference node. The
rotational DOF can be released from the constraint, allowing the transfer of forces, but
not of moments. The default weighting method sets all weight factors to 1, but linear,
quadratic and cubic weight factors can be implemented if desired. Additionally, this
coupling constraint is available for both geometrically linear and nonlinear analyses.

Considering the use of such constraint to model the pressure transfer from the
icosahedral skin to the frame, the equivalent pressure at each triangle can be given by:

F = PA, where A is the triangle’s area, P is the pressure, and F' is the equivalent load.
Before using the constraint in the frame, a triangular model with the equivalent load
applied to a reference point located at the center is created (shown in Figure 35) and

compared to the pressure model (shown in Figure 28).
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After discretizing the model with 400 M3D3
membrane elements, displacement and von Mises
stress are compared by using nonlinear analysis
in both pressure and equivalent load models. Errors
are calculated with respect to the pressure model
by comparing the displacement nodal and stress

elemental results. For displacement, mean and

maximum errors are 0.3% and 0.5%, respectively.

] Figure 35: Triangular Membrane
For stress, mean and maximum errors are 1.5%

) ) Model with Coupling Constraint. A
and 83.2%, respectively. Displacement and stress

o ) is the triangle’s area, P is the pressure,
contours are shown in Figure 36 and Figure 37,

) o and F is the equivalent load. The
respectively. While displacement contours

o ) coupling constraint is represented by
show clear similarity, stress contours deviate close

) ) the blue lines.
to the center, suggesting that the constraint causes a
change in the stiffness matrix. Note that while pressure is a follower force, the equivalent
force applied to the reference node will always remain perpendicular to the initial

configuration, therefore causing a change in the membrane stiffness (see Section 2.4.1 for
more details).

Regardless of the difference in stress that the coupling constraint showed in the
triangle, it provides a method to estimate the forces transferred to the frame. This
estimation relies on the assumption that all the pressure magnitude is transferred to the
frame and that the skin provides no stiffness assistance to the frame. Assuming that the

skin behaves as a membrane, just the displacement DOF are constrained, such that only
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(a) Pressure Model (b) Coupling Model

Figure 36: Triangular Membrane Coupling Constraint Validation: Out-of-Plane Displace-

ment Contours

(a) Pressure Model (b) Coupling Model

Figure 37: Triangular Membrane Coupling Constraint Validation: Out-of-Plane von Mises

Stress Contours

forces (not moments) are distributed to the frame. Using a spherical coordinate system

(refer to Figure 34), the equivalent force is applied to reference points located at the
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center of each triangle created by the 30 frame members in the radial direction (towards
the center). Each reference point is coupled via separate coupling constraints to the
respective beams. This model is used for subsequent frame studies to discretize the frame
and evaluate the effects of different boundary conditions and beam profiles.

3.6.3 Boundary Conditions Study.

One of the main features of the icosahedron is symmetry. This property provides
several structural advantages such as equal surface loading, improved stress distribution
and buckling retardation. Additionally, the actual design will have no BC once afloat.
The FEA requires for the model to have BC since otherwise the static analysis runs into
singularities. Therefore, is important to select them such that symmetry is maintained
throughout the analysis.

Three BC are considered, as shown in Figure 38. The first has the bottom vertex
fixed Figure 38a), therefore all six DOF are constrained. The second has the bottom
vertex fixed and the top vertex with the DOF 1 and 2 constrained (Figure 38b). The third
has both bottom and top vertices with only DOF 1 and 2 constrained (Figure 38c).

The frame model is discretized with 1062 B32 beam elements and an initial W/B of
0.35. Beams are hollow with a beam thickness to radius of 0.05. Using nonlinear
analysis, each of the BC are analyzed and compared. Displacement contours for all three
acBC are shown in Figure 39. In the first BC, non-symmetric behavior is clearly shown
close to the bottom vertex (Figure 39a). Behavior in the second BC improved, but
non-symmetry is still seen around the bottom vertex (Figure 39a). At this point, it can be
deducted that having the bottom vertex fixed is causing the unsymmetrical response. The

third BC is shown in Figure 39a. In this case, the icosahedron shows symmetrical
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Figure 38: Frame Boundary Conditions.Yellow x’s represent reference points, and arrows

equivalent loads. Tracked points are used to establish the force versus displacement response.

response, therefore restricting the rotational DOF and the vertical displacement DOF

causes unsymmetrical response. Furthermore, the unsymmetrical BC ran into numerical

convergence problems after about ~ 45% of the equivalent SL pressure, a common issue

when the Newton Raphson technique runs into a bifurcation point.

To visualize nonlinear behavior as pressure increases, the latter is plotted against one

of the edges’ midpoints located adjacent to the bottom vertex, where the unsymmetrical

behavior occurs. Results plotted for the three BC are shown in Figure 40. Note in

Figure 40a that just before the analysis stops, a snap-back like behavior is shown,

followed by a zero slope that drives numerical convergence issues. The snap-back like

behavior shown indicates a beam withdrawal or change in displacement direction while

still taking load. Even though the slope reverses, there is no softening, therefore the beam

does not collapse. For the BC 2, where the frame starts responding slightly more
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Figure 40: Frame Boundary Conditions Comparison - Edge Midpoint vs Equivalent

Pressure

(c) Boundary Condition 3
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symmetrically, a higher slope suggests that the frame increases its stiffness as it
approaches to a symmetrical configuration (Figure 40b). Nevertheless, snap-back is seen
just before approaching a zero slope. Note that in this case, the snap-back is more
pronounced, showing a slope closer to zero around that area. The snap-back can be
attributed to the fixed BC ‘pulling’ the beam back in order to achieve an equilibrium
state. Not finding the equilibrium path, the beam snaps-forward short after the stiffness
matrix becomes singular, running into convergence problems. On the other hand, the
frame’s response using the BC 3 is not only symmetrical, but also its stiffness increases
significantly and the analysis fully converges (Figure 40c). Therefore, BC 3 is selected
for further analyses.

3.6.4 Convergence Study.

This convergence study was performed with a buckling analysis, where the first five
critical pressures were used to establish convergence. The model was established using
the frame standalone with the coupling constraint and the symmetric BC discussed in
Section 3.6.3. The edges are seeded homogeneously, from 5 to 25 seeds, corresponding
to 150 to 750 seeds. Two methods were used to evaluate convergence. First, the
maximum % difference of all critical pressures is considered by comparing the i seeding
value against the i — 1 value. Second, the maximum % difference of all the critical
pressures was considered, this time by comparing the i seeding value against the last, 7,4,
value. Tabulated results, included in Section A.7, show that 270 elements corresponding

to a seeding of 8 per member is sufficient to achieve convergence within 0.01%.
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3.6.5 Beam Profile Study.

The last frame study is the beam profile. This study pretends to answer the last
question formulated at the beginning of this chapter, repeated here: considering the frame
performance, which is better, hollow or solid beams? At this point, the appropriate
number of elements and BC were known. Those were used in this study with a linear
static analysis to evaluate the frame’s response to the changes in the beam’s circular
profile, by adjusting the beam’s thickness to radius ratio (c). A profile comparison for ¢
values of 0.05, 0.5, and 0.95 is shown in Figure 41. Note that since the mass is held
constant, the radius changes inversely proportional to c. Linear analysis provides a rough
approximation of the frame’s response, but since the interest is to evaluate the response
with respect to the solid beam, it provides an efficient way to do so. Therefore, the results
considered were normalized to the solid beam, which include moment of inertia (Z,) ,
maximum stress (S ;4x.,), Maximum displacement (U, ,) and critical pressure (P, ).
The study was performed by changing the beam’s thickness to radius ratio, c, as:

0.05 < ¢ <0.95.

The ‘perfect’ frame has the highest moment of inertia and critical pressure, and the
lowest displacement and stress. Each value is plotted against ¢ in Figure 42. Note that the
best frame performance is achieved as ¢ tends to 0. In reality, such value is unattainable
and considering that the minimum manufacturable thickness is material dependent, a
¢ = 0.05 is selected for the icosahedron analysis. The tabulated results of this study are

included in Section A.8.
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3.7 Icosahedron

At this point, several studies have been conducted in order to validate the selected
FE techniques, as well as to find the correct modeling discretization and make design
decisions. These studies provided the background needed to properly model the
icosahedral skin and frame combination; results were gathered in order to establish the
basic model. Nonetheless, there are several techniques that are particular for the
icosahedron. Models analyzed are presented following the discussion of such techniques.

3.7.1 Modeling Techniques.

Additional to the techniques verified during previous studies, three more techniques
are used for the icosahedron. First, the skin connectivity to the frame. Abaqus provides
various methods to model such connectivities, including the contact algorithm and the tie
constraint. The latter, used in the icosahedron model, ties two surfaces together during
analysis. The tie constraint allows for the selection of specific DOF to be tied, and is
capable of tying beam elements to surface elements, such as the shell and membrane
elements previously discussed. The tie is based on master and slave surfaces selected by
the user; once the DOF to be tied are selected, the constraint eliminates those from the
slave surfaces. In the icosahedron case, the frame is the master surface and sk